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ABSTRACT
Currently, cloud storage services are used by consumers for a wide
variety of important documents, including family photos, health-
care information and proprietary corporate data. These services
all make promises about their storage solutions, usually including
some guarantees of confidentiality, integrity, and availability. How-
ever, downtime is a fact of life for cloud services and, for better
or worse, many providers openly admit to being able to access cus-
tomer files for purposes ranging from analytics to law enforcement.

Daruma solves this problem by eliminating the need to trust
any cloud provider. We run no servers ourselves - instead, we com-
bine and secure the space on cloud services already used by con-
sumers (like Dropbox and Google) with advanced cryptographic
and redundancy algorithms. Our system provides a simple guaran-
tee: no one cloud service provider can read, change, or delete your
files – ever. Daruma feels just like an existing service - there are
no extra passwords to remember or frustrating workflows to nav-
igate. Daruma handles the complexities of security and reliability
for users, allowing them to confidently utilize cloud storage without
worrying about their previously inherent risks.

1. INTRODUCTION
Today, millions of people rely on cloud services to store their files.
Companies like Dropbox Inc., Box Inc., and Alphabet Inc. have
popularized the model of offering free or cheap storage capacity on
servers they administer. These companies offer a convenient offsite
backup and file-sharing service for their users and these users often
take advantage of this by storing a variety of confidential or other-
wise valuable documents on them. However, cloud storage neces-
sarily come with a large set of risks. The ”cloud” is susceptible to a
wide variety of failures, ranging from a user’s spotty connection to
the Internet to sophisticated hacking attempts and government in-
terventions. Non-technical end-users rarely consider - or even know
how to consider - what might happen were these cloud services to
fail.

There are several naive approaches to guard against poten-
tial cloud service failures. One option is to encrypt all files before
upload. However, such a process forces users to remember an en-
cryption key; if this key is forgotten, all files are permanently lost.
We wanted to build a solution that securely stored files and any en-
cryption keys on the cloud, without leaking any sensitive data.

A potential solution to achieve fault-tolerance is to backup
files on multiple providers. However, this is very space inefficient,
as it stores the complete file on every provider used. We strove

to build a system that combined cloud providers in a much more
space-efficient manner, while still providing the availability guar-
antees of a backup protocol.

Tahoe-LAFS is a system implemented by Zooko Wilcox-
O’Hearn that also attempts solve these problems by combining
cloud providers [11]. However, Tahoe is targeted at system admin-
istrators and network security specialists. It is virtually impossible
for an average user to set up, and requires users to be able to run
code on their cloud storage providers. Thus, it is not a tool that can
be used out of the box - it requires a significant time and money
investment before its benefits become apparent.

We designed a system that accomplishes all of these goals in a
verifiable manner while abstracting its inherent complexity behind
a familiar interface.

2. APPROACH
2.1 Threat Model
One of our first steps was carefully developing a threat model for
our application. We started by characterizing our users and split
them into two groups based on need:

Business users Likely to be non-technical, but have proprietary
corporate information that requires confidentiality and fast avail-
ability.
Personal users Similarly non-technical but might be motivated
more by a sense of general privacy in addition to concerns of spe-
cific data sensitivity (e.g. tax form storage).

We then developed a list of adversaries and their capabilities:

Rogue Provider Providers are all corporations that administer
servers to provide remote data storage. They have the ability to
read, modify, or delete all files that a user stores, in addition to
the ability to entirely remove a user’s account, provide a third party
with access, and collaborate with other providers. They may do this
for a variety of reasons: they may be hacked by a third party, house
malicious employees, be compelled by a government, see opportu-
nities for business value, or make engineering mistakes that lead to
these outcomes.
State-Level Actor Governments are increasingly expanding their
electronic surveillance capabilities through technical and legal
means. Today, it is widely assumed that a state-level actor can read,
block, and modify network traffic. They can also in many cases
legally compel corporations to perform many of the actions listed
under Rogue Provider. These actions may be taken on both a large
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scale in a dragnet-style surveillance effort or in a targeted manner
for an individual investigation.

With this in mind, our primary goal was to protect the confidential-
ity, integrity, and accessibility of user file contents on computers
other than the users’ own. As an additional goal, we wanted to be
able to apply these guarantees to file metadata where possible.

To do this, we set the following security guidelines:

(1) All network-bound traffic must be encrypted with a key
providers do not know (i.e. SSL is insufficient for this pur-
pose).

(2) All encryption must be authenticated to prevent tampering.
(3) It should be difficult for any one non-user actor to hold all the

information necessary to reconstruct a key.
(4) It should be difficult for any one non-user actor to, by corrupt-

ing or removing access to data, remove access to a user file.

2.2 User Experience
One of our overarching goals was to make our application usable
for non-technical end-users, so we had to develop an experience
that made our features clear without forcing users to understand
any of the behind-the-scenes implementation. We identified four
key areas to focus on:

Key Management This project needed to keep track of many keys
for both file encryption and provider authentication. However, users
rarely make proper key selection or storage choices, so we decided
that users should not have to remember any keys beyond their exist-
ing provider login credentials. Making all key management happen
behind-the-scenes would also decrease the friction in adopting and
using our system.
File Management Users needed a way to add, remove, edit, and
read files tracked by the system. The filesystem interface handles
all of these operations in a way that computer users are already very
familiar with, so we decided we would either present a filesystem-
like interface or operate on top of the existing filesystem. While the
current implementation only supports the latter due to its ease of
use and interoperability, the former may be more suited for certain
archival purposes, as it allows an end-user to store files in the cloud
that they may not want to store locally (perhaps due to local capac-
ity constraints).

To provide the least friction in usage, we decided to implement
the user interface pattern popularized by Dropbox of synchronizing
a target directory in a user’s filesystem and visually indicating the
synchronization status of each file in the operating system file ex-
plorer (e.g. Finder on OSX).
Fault Handling This project is intended to be exposed to Byzan-
tine faults across a distributed network, ranging from network fail-
ures to state-level attackers. Some of this behavior can be recovered
from, while other behavior can result in more catastrophic failure.
Moreover, the degree to which a system can recover from data is
often configurable (e.g. by increasing redundancy). Since our tar-
get users were non-technical, we wanted our fault handling process
to be as automatic as possible while still communicating to the user
the status and risks of our system. As a motivating example, we
considered what would happen if a file was corrupted by a provider.
Our system could have been designed to be resilient this sort of er-
ror by just reconstructing the relevant user file with data from other
providers and then notifying the user. However, there would still be
many questions and decisions for the user at this point in time. Was
the overall system still safe to use? Should they remove the offend-
ing provider? What should they do with the recovered file? To that

end, we decided to implement a fault recovery algorithm that would
go beyond the basics of merely detecting errors and recovering files
to also securely fix errors as they came up. To help users understand
the overall system health as we did this, we decided to implement a
scoring system that would educate users about the behavior of their
providers and advise them on how each one was affecting the sys-
tem. Finally, we decided to make all of our operations atomic with
automatic rollback to reduce the number of states our system could
be in.
Performance To maintain ease of use, we wanted our users of our
system to experience the same upload and download speeds that
they maight see on their existing providers. Similarly, since we ex-
pected that many users would have free-tier provider accounts (with
relatively low storage capacity), space efficiency was a high prior-
ity. We captured both of these constraints setting as a goal a network
cost that increased roughly linearly with plaintext size.

2.3 Architectural Overview
Our architecture can be divided into several modules:

Manifest Module This module presents a filesystem abstraction to
the user. Daruma-tracked files have numerous metadata points asso-
ciated with them and are not stored internally in the same hierarchy
that they are on a user’s filesystem, so this module translates be-
tween our internal representations and a filesystem representation.
Encryption Module This module encrypts and decrypts all user file
data, including the manifest. This allows us to guarantee confiden-
tiality of all file data as well as a significant amount of metadata
contained in the manifest, such as user file names. By using au-
thenticated encryption, this module allows us to verify the integrity
of data upon retrieval. All files are encrypted with different keys,
all of which are stored in the manifest.
Distribution Module This module takes encrypted files, splits them
into shares using an erasure encoding scheme, and disperses the
shares among providers. Under this scheme, a configurable number
of shares may be lost while still guaranteeing retrievability of data.
Master Key Module This module administers the randomly gener-
ated master key, which is used to encrypt the manifest. The master
key is also split into shares using a variant of the Shamir Secret
Sharing algorithm that provides both resilience to share deletion
and share secrecy. When necessary, the master key is regenerated
to protect secrecy.
Provider Module This module provides a common abstraction for
all provider APIs.
Resilience Module This module runs on top of all of the other mod-
ules and handles recovery from provider errors. If a provider goes
down or corrupts files, it can execute the relevant recovery by, for
instance, redistributing files among the remaining providers or re-
uploading uncorrupted data to the faulty provider.

2.4 Filesystem Abstraction
To implement our system, we began by designing a secure filesys-
tem representation that we would use internally to track user files.
We needed the following three properties out of our representation:

(1) The filesystem should support storing files, files in directo-
ries, and empty directories. While there are other features that
filesystems support (e.g. hard links), we found this to be a min-
imal set of features that gave us compatibility with average
daily use.
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(2) The filesystem should hide file metadata (e.g. directory struc-
ture and node names).

(3) The filesystem metadata should have a minimal storage over-
head.

We decided on the following structure:

(1) All filesytem metadata would be stored in a single man-
ifest file. This file would map user file paths (e.g.
”/Users/alice/documents/foo.txt”) to an internal codename
(e.g. ”5DB62955FBCD4228968A046A873A9236”) as well as
other metadata, such as encryption keys.

(2) User files would be stored in a flat structure in a single direc-
tory. Each user file would be stored under its code name rather
than its file path, thus hiding file paths from providers.

(3) To achieve atomicity, we would treat user files as being im-
mutable and change the codename references in the manifest
after we had confirmed that any given operation had succeeded.
For more details on this implementation, see appendix B.1.

2.5 Authenticated Encryption
We chose Dan Bernstein’s NaCl package for authenticated encryp-
tion [3]. We selected this package for several reasons:

Authentication This package offers authenticated encryption,
which was pivotal for our ability to detect and punish provider mis-
behavior. This guarantees the integrity of our system because suc-
cessful decryption of authenticated ciphertext ensures that the data
has not been modified.
Vetted Cryptography Dan Bernstein’s work is highly respected
within the cryptography community and this package has been vet-
ted by those in that community.
No User Modifications The goal of this package was to provide us-
able cryptography where all details and decisions are removed from
users of the library. It is generally considered poor practice to roll
one’s own cryptography or even attempt to navigate the various set-
tings and parameters without strong expertise.

Using this package, we generate a random key for each file. The
mapping from files to keys is then stored in the manifest. It was
important that each file get its own key (rather than a single master
key being used to encrypt all files). Otherwise, our scheme would
reduce to e.g. AES-ECB, an AES mode that is known to reveal
metadata about the data it encrypts because all identical blocks en-
crypt to the same ciphertext.

2.6 Erasure Encoding
One of our main goals was to efficiently combine the space avail-
able to users through a single and secure interface. We therefore
needed to distribute user files in such a way that we could maintain
confidentiality, reliability, and availability. This corresponds to our
core promise to users: no provider can read, delete, or modify their
files.

We therefore needed an overall distribution scheme that
would guarantee these properties while being both time and space
efficient. In our own research, we found the following primitives
and schemes available for such use:

All-or-Nothing Transform (AONT) This is an s-of-s threshold
scheme; all shares are required for the reconstruction of the orig-
inal secret. As a result, the algorithm runs quickly, in O(log(s))
time for a message of length s, and no additional storage costs are
incurred. This is often used as a preprocessing step for separable

encryption suites such as block ciphers (e.g. AES-CBC) where de-
cryption of a single block of ciphertext results in a single block
of plaintext. This scheme ensures that no information is revealed
unless all blocks can be decrypted, protecting against certain brute
force attacks. [9]

Rabins Information Dispersal Algorithm (IDA) This dispersal al-
gorithm guarantees that any m of m shares can be used to recon-
struct the secret. It runs in O(m2) time and the total space re-
quired for dispersing data of size F is n

m
∗ F . If the parameters

are set so that n = m then the dispersal incurs no additional stor-
age cost, consistent with AONT. Since each share will be 1

m
of its

original size, this dispersal achieves maximum space efficiency for
its threshold. However, this also implies that the scheme does not
make strong confidentiality guarantees - that is, some smaller than
m subset of shares may reveal information about the secret. [6]

Shamir Secret Sharing Shamir Secret Sharing is very similar to
Rabin’s IDA but with some key differences. In particular, it is a
k-of-n threshold scheme such that k share are required for recon-
struction and any subset of fewer shares reveals no information. In
order to make this guarantee, it is necessary that each share be the
same size as the original secret. Therefore, for data of size F, the
total stored data for this scheme would be n ∗ F . [10]

Reed-Solomon Encoding This scheme makes the same guarantees
as Rabin’s IDA with the same space performance. Technically,
Reed-Solomon encoding takes a message of length m and extends
it to be n symbols such than any m symbols can be used for full re-
construction while the IDA actually generates shares. However, the
IDA is discussed primarily in academia while there are a plethora
of Reed-Solomon implementations (which follow the technical be-
havior of the IDA instead in terms of share generation). [5], [8]

Secret Sharing Made Short This scheme combines the confiden-
tiality properties of Shamir Secret Sharing with the space efficiency
of Rabin’s IDA. Specifically, a random key is generated and used to
encrypt the message that is meant to be kept confidential. The en-
crypted data is then distributed with Rabin’s IDA and the key itself
is protected and distributed with Shamir Secret Sharing. [4]

We were excited to find in our research that the Secret Sharing
Made Short Scheme closely mirrored parts of the solution scheme
we had independently been discussing. We chose this scheme be-
cause it matched the confidentiality guarantees that we needed
while still providing optimal space efficiency for user files.

We had to make a few modifications on top of this scheme
in order to match our use case. In particular, we implemented a
stronger variant of Shamir Secret Sharing (see 2.7) and we used an
existing Reed Solomon Encoding library. Additionally, rather than
generating a single key in order to encrypt a single file, we had to
generate a key for each file and store the mapping in a manifest (see
2.5). The manifest was then encrypted with a randomly generated
master key. We then used Reed Solomon encoding to distribute the
encrypted files as well as the encrypted manifest and distribute the
master key with Shamir Secret Sharing.

2.6.1 Dependency Sandboxing. We used the PyECLib library
[2], a wrapper around the liberasurecode library [1], to provide
our erasure encoding capabilities. During the development of our
project, we frequently found that by corrupting the shares provided
to the library, we could induce a segfault in it and bring down our
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entire program alongside it. To mitigate this, we reported the is-
sues upstream to the PyECLib and liberasurecode maintainers, who
helpfully developed fixes to the problems we identified. However,
since the erasure decoding stage of our pipeline necessarily took
raw data from providers as input, we were wary of undiscovered
bugs in this library continuing to crash our program. So, we devel-
oped a sandbox for this and other library dependencies that would
run their stages of our data pipeline in separate processes and report
their results back to the main process via inter-process communi-
cation channels. With this development, any third-party library we
depended on could crash (or be otherwise compromised) without
harming our main application logic - any errors would be passed to
the resilience subsection (see 2.9).

2.7 Robust Secret Sharing
In order to encrypt our manifest without forcing users to remem-
ber and protect a new credential, we needed to generate a random
master key that could be stored across the providers with confiden-
tiality, integrity, and reliability.

For confidentiality and reliability, we needed a threshold
scheme such that for shares distributed across n providers, re-
construction of the secret would be possible with any k of these
providers but no information about the secret would be revealed to
any subset of fewer than k providers. These requirements were sat-
isfied by Shamir Secret Sharing (see 2.6, [10]). However, Shamir
Secret Sharing does not provide the integrity guarantees that we
needed. In particular, Shamir Secret Sharing is tolerant to some
subset of missing shares, but it is vulnerable to corrupt shares. We
therefore needed to apply a verification wrapper around this scheme
that would guarantee the integrity of the reconstructed secret.

Such schemes require metadata to be transmitted as part of
the shares. Much of the academic work within this space has been
targeted at minimizing the size of the resultant shares as the num-
ber of players increased. However, since we only needed to apply
this scheme to a single encryption key and our target use case would
have no more than 10 providers, we favored simplicity over asymp-
totic efficiency. We therefore chose the “Verifiable Secret Sharing”
scheme presented by Rabin and Ben-Or [7].

For additional information on the inner workings of Shamir
Secret Sharing and the Robust Secret Sharing wrapper, see ap-
pendix A

Open-source implementations of Shamir Secret Sharing are
available and we had originally planned to make use of an exist-
ing library. We selected a library based on its apparent code qual-
ity and hygiene, but when we implemented our own unit tests we
found a security flaw within that library. After communicating with
the team behind that library, we decided that our best option would
be to implement Shamir Secret Sharing ourselves. Furthermore, we
were unable to find any Robust Secret Sharing implementations as
this space has been largely academic. As best as we know, ours is
the first Robust Secret Sharing implementation in the wild.

2.8 Providers
Daruma currently supports four popular customer facing cloud stor-
age companies: Dropbox, Google Drive, OneDrive and Box.

We created two flows for creating providers. The first supports
providers that implement the OAuth flow, and redirects the user to
a link where they can log in on the providers’ website. The sec-
ond supports providers that take a single parameter (for instance, a
provider residing on a local disk might require only the providers’
path on disk for construction).

After providers are created, all providers share a common in-

terface, so that the internal system can treat them all same way.
All providers support GET, PUT, DELETE, and WIPE operations.
These functions each wrap calls to the provider API.

OAuth tokens and credentials for providers are cached in a
user credentials JSON file on the user’s disk. This allows Daruma
to automatically load cached providers on load, simplifying the user
experience.

2.9 Resilience
A major concern when implementing Daruma was ensuring that no
coalition of providers, through action or inaction, could corrupt the
state of the filesystem. This included cases where certain providers
strategically go offline during crucial uploads - for instance, if only
some providers are online during an upload, it stands to reason that
different parts of the system could be out of sync. For this reason, it
was necessary to make all write operations atomic. Similarly, repro-
visioning (redistributing files and shares upon changing a threshold
or adding/removing a provider) was written such the system did not
become corrupted if a provider failed during the operation.

In order to ensure that our guarantees were maintained as var-
ious cloud providers failed and came back online, it was necessary
to quickly detect and repair errors on providers as soon as possible.
Daruma needed to account for the fact that a provider could cor-
rupt files at one time frame and thereafter behave correctly as some
other provider failed. Both our major recovery/distribution proto-
cols - Robust Secret Sharing and Reed-Solomon, for master keys
and files, respectively - were written to provide, upon successful
recovery, information about which recovered shares were invalid.
The providers with invalid shares (and providers who did not return
a share at all) were tagged as failing, and upon recovery, repaired.
The repair itself consisted of re-encrypting (with a new key) and re-
distributing a file (in the case of an invalid Reed-Solomon share) or
creating and sharing a new master key, and then redistributing the
manifest (in the case of an invalid Robust-Secret-Sharing share. It
is important to note that, in order to ensure that information was not
leaked, new keys had to be used on all repairs; if not, a malicious
provider could pretend to lose shares in order to collect multiple
shares of the same plaintext.

In the case of a permanently failing provider, it was important
that we have a limit to retries, after which we would decide not to
continue repair attempts. It was also crucial that we report to users
when providers were failing badly, so that such a provider could
be removed. However, we needed a way to differentiate between
providers who were experiencing temporary difficulties (and failed
several times in a short time span, but resumed normal service af-
terwards) and providers who exhibited patterns of failure over time.
To do this, we used an exponential smoothing formula of the form
s = αx + (1 − α)s for a provider score. Here, s is the provider’s
score, and x is a data point - 1 if a provider responded to the most
recent request without errors, 0 otherwise. This score represents
the amount of time a provider is responding without flaws, and ac-
counts for both past and current behavior, weighting the latter more
heavily. Below a certain threshold, a provider is considered ”red” -
retries are no longer attempted, and the user is advised to remove
the provider. Below a higher threshold, a provider is considered
”yellow” - the provider has been experiencing failures, but seems
to be mostly okay. Tweaking the thresholds and α enable us to ac-
count for a wide variety of provider behaviors - either penalizing
harshly or being more tolerant, as necessary.

For more information on the resilience protocols and how ex-
ponential smoothing parameters were chosen, see B.
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3. RESULTS AND MEASUREMENT
3.1 User Interface
Our goal was to provide easy integration with a user’s existing
filesystem. Below is a comparison of our interface with the tra-
ditional Dropbox interface:

Fig. 1. Daruma Finder Integration on OSX

Fig. 2. Dropbox Finder Integration on OSX

3.2 Capacity Utilization
We broke capacity down into three possible categories:

Available Secured This represents the space that will be available
to users with a redundancy guarantee.

Available Unsecured This is space that is still available to users
on their individual providers. They can access this space through
the provider interfaces that they have always used but without any
protection through redundancy.

Unavailable Overhead This space is lost and unavailable to the
user for storage. This is the cost of redundancy for each scheme.

We also considered two different cases to show how Daruma’s
comparative performance varies across the capacity distribution of
the providers:

Free Tier This shows the capacity utilization in the case where a
user has accounts on the free tier of each of the providers. This
gives them 2 GB from Dropbox, 5 GB from OneDrive, 10 GB from
Box, and 15 GB from Google Drive.

Uniform This assumes a uniform capacity distribution across
providers. In order to match the 32 GB total from the Free Tier
category, we assumed here that each of the four providers would
have 8 GB.

We showed the breakdown of the total capacity usage in four differ-
ent cases (in two of those cases, the breakdown did not vary from
the Free Tier distribution to the Uniform distribution while in the
other two it did and both versions are therefore shown). We consid-
ered the following four distribution schemes:

Without Replication Users store files separately on each of their
providers without any redundancy. This represents the way users
currently interact with cloud providers.

This will give the greatest possible amount of unsecured avail-
able space but no secured space.

Replication This is the case of naive full redundancy. Each
provider will have a full copy of each user file.

This will always be the inverse of Daruma - that is, its over-
head will always be equal to the secured space on Daruma and
Daruma’s overhead will always be equal to its secured space when
they are applied to the same capacity distribution.

Manual Duplication Each user file is stored in full on two
providers.

This provides more secured space than Daruma can on a Free
Tier, but will significantly more overhead that consumes the large
amount of available unsecured space that Daruma can still offer. It
offers significantly less secured space and much more overhead as
compared to Daruma used with Uniform capacity distribution.

Daruma We use Reed Solomon Encoding to efficiently distribute
user files under a variety of capacity distribution models. Our goal
is to minimize overhead while securing as much space as possible.

3.3 Speed
Daruma’s measured speed performance is quite good compared to
using providers directly. All operations involve parallel network
requests to all providers, so Daruma’s speed is fundamentally af-
fected by the speed of the slowest provider. However, because of
the space efficiency of Reed-Solomon encoding, Daruma shares
are smaller than the original files, resulting in some speed gains.
In the following tests, Daruma was configured with 5 providers (4
online), and compared to file operations directly on providers. Note
the the axes are in a logarithmic scale.
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In a download operation, Daruma simply has to download Reed-
Solomon shares from providers. The size advantage of using these
shares becomes more apparent as file sizes grow larger, as Daruma
becomes significantly faster than the slowest provider by the time
file sizes approach 1GB.

In an upload operation, Daruma first uploads the file, and then
uploads an updated manifest. For small files, the extra operation
causes Daruma to be slower than other providers, but only by a
few seconds (about 2 seconds slower for 100kb files). As files grow
larger, the file size advantage described previously becomes more
influential, and Daruma again becomes significantly faster than the
slowest provider.

4. ETHICAL AND PRIVACY CONSIDERATIONS
4.1 Social Context
Online security and privacy have gained increased public scrutiny
recently due in part to stories of large corporations being hacked
and revelations of mass surveillance by governments around the
world. While this is a rapidly evolving situation, several points re-
main clear. First, regardless of the risks, users and businesses are
willingly trusting more and more of their data to the cloud. Sec-
ondly, the threat model a security-conscious company must main-
tain needs to include itself as an adversary, either due to the possi-
bility of a rogue employee or because it may become the target of
hackers or governments.

This latter point was recently highlighted in the high-profile
legal battle between Apple, Inc. and the Federal Bureau of Inves-
tigation. During the case, it was revealed that Apple had imple-
mented two versions of PIN protection in different generations of
phones it manufactures and only in the earlier generation could it
provide a tool to bypass the protection. While the case sparked a
wide debate over whether the FBI should compel Apple to produce
such a tool, the conclusion for Apple was clear: in the earlier gener-
ation, its position of trust made it an adversary to complete security.

4.2 Architectural Considerations
This conclusion was deeply considered in the architecture of
Daruma. First, all Daruma code runs on users’ computers. This
means that if an adversary were to try to compromise Daruma cen-
trally, they would no central surface to attack: there are no Daruma
servers. There is still, however, the possibility that we as project
developers can write or introduce malicious code in the project,
either due to malintent, as the result of a legal order, or because
of hacking. To protect against this, the entire Daruma codebase is
published as an open-source project so that it can be audited before
use. Even if an average end-user does not have the technical know-
how to verify that our code operates as advertised, this opens up the
opportunity for trusted third-parties to inspect the code and publish
their results.

Finally, cloud security is a very complex landscape that often
outstrips the technical understanding of its users. Because of this,
we spend significant effort making sure that Daruma could provide
all of its features to an entirely non-technical end-user. There are
solutions that achieve some of the same goals that Daruma does
with significantly more user maintenance and understanding, but
we strove to ensure that traditional maintenance details, ranging
from key management to error handling, were handled automati-
cally.

5. DISCUSSION
Our current product is capable of replacing an application like the
Dropbox client on a user’s computer for most non-social tasks on a
day-to-day basis (e.g. barring collaboration and link sharing). Users
can currently log in with their credentials for Dropbox, Google
Drive, OneDrive, or Box in addition to using standard filesystem
paths as local providers (e.g. to use a mounted local backup drive).
Once logged in, the application will watch a Daruma folder in the
user’s home directory for changes and synchronize the files it stores
online with the Daruma folder state. When providers go down or
otherwise remove access to or corrupt files, we properly recover
the system if at all possible.

There are still some inherent weaknesses in the system as well
as areas that we see opportunities for improvement in. We break
these areas into the following categories:

Threat Model Weaknesses Our system has a threat model that is in-
tentionally limited to only consider parties outside the user’s com-
puter as potential attackers. While this covered both providers and
ourselves, we do not take significant steps to protect sensitive ma-
terial on the computer system we are running on. If we were to
expand our threat model, additional thought might be put into how
to sandbox our application from local threats.
Usability Usability was a high priority for us as we developed, so
significant effort was put into making interactions feel familiar for
a non-technical user. However, there are other friction points that
might be considered, such as our requirement that users have many
existing cloud provider accounts. To mitigate these issues, future
work could include making it easier to sign up for new provider ac-
counts as well as more informative communication regarding sys-
tem statistics such as capacity utilization.
Sharding When sharing files, Daruma currently builds shares for
the entire file at once. For large files, this results in a significant
memory cost. This can be avoided by cutting files into many small
pieces (shards), and sharing these sharesd individually. The shards
would then be reconstructed on download. If parallelized, a shard-
ing operation would also significantly improve speed, as it would
allow Daruma to upload multiple parts of a file at once.
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Sharing While our system rivals Dropbox and other cloud
providers in usability, Daruma lacks certain features that have be-
come fundamental for other cloud providers. For instance, files
sharing (allowing other users to view your files) is a feature com-
monly used on Dropbox, but unavailable in Daruma. Such a feature
could be implemented if, on sharing a file with a secondary user,
some public key and manifest information was passed to the sec-
ondary user. This feature would further help users transition from
individual providers to Daruma.
Cross-Computer Usage Currently, our usage model assumes that
users will not have concurrent Daruma sessions on two different
computers. If this assumption was broken, we would have to im-
plement several safeguards to ensure the systems do not go out of
sync or enter a corrupted state if providers maliciously fail. While
hard, these problems are not intractable, and would make Daruma
more usable for everyday users.
Cross-Platform Interfaces Currently, Daruma’s user interface only
works on OSX. Making Daruma’s GUI usable on all platform is a
major future goal.
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APPENDIX

A. IMPLEMENTED CRYPTOGRAPHY
For our project, we implemented two core cryptography schemes.

A.1 Shamir Secret Sharing
This is a k-of-n scheme such that any k shares can be used to re-
construct the secret but that any subset of fewer shares reveals no
information. This is fundamentally achieved with polynomial eval-
uation and interpolation [10].

Sharing begins with the generation of a polynomial P with k
- 2 random coefficients and the y-intercept set as the secret to be
shared. The polynomial will therefore be of degree k - 1 and n x-
values will be selected for evaluation. The resultant (x, P(x)) points
are then distributed as the shares associated with the secret [10].

For reconstruction, a minimum of k of these points
can be used to reconstruct the polynomial P. By taking P(0)
it is straightforward from there to recover the secret [10].

Fig. 3. n=3, k=2
We can demonstrate how this

scheme works with motivating exam-
ple. We consider a case with 3 play-
ers where any 2 of them can be used
for reconstruction. Our polynomial
with the secret as the y-intercept will
therefore be of degree 1 (i.e., a line).
We see from this diagram that with
any two shares (points) we can re-
construct the line and therefore the
secret. However, an infinite number
of lines could pass through a single
point so with one share no information about the secret is revealed.

While this scheme protects well against missing shares, it
is vulnerable to corrupt shares. In that case, polynomial interpo-
lation will construct from the points a polynomial different from
the one originally generated, preventing the recovery of the secret.
This problem is addressed by Robust Secret Sharing.

A.2 Robust Secret Sharing
We used Robust Secret Sharing so that we could tolerate and iden-
tify up to k - 1 corrupt shares. The algorithm proceeds as follows -

Shares are generated as before through Shamir Secret Shar-
ing. Each of these shares is then used as the message for n generated
check vectors. A check vector is therefore generated for each pair
of
, and this metadata is sent to the providers along with the generated
shares.

When the providers return their shares and metadata, we use
that metadata to create lists of verified shares from the perspective
of each provider. This allows us to use Shamir Secret Sharing for
each such list to reconstruct what each provider would think the se-
cret would be if they had access to the shares and metadata.

We then apply a voting scheme to select the correct secret.
If fewer than k providers returned corrupt shares and we have

at least k honest shares, the secret returned from this process is
guaranteed to be the one that was originally shared.

This scheme as described varies slightly from the algorithm
presented by Rabin and Ben-Or [7]. In particular, their algorithm
guarantees that upon reconstruction all players broadcast their in-
formation and the guarantee they make is that each honest player

will correctly recover the secret originally shared [7]. However, we
do not ever want the providers learning the original secret so rather
than having players that broadcast their data to each other upon re-
construction, we request information back from each provider. We
then take a vote on the secrets constructed from the view of each
provider, and the correctness of this scheme reduces to the guaran-
tees made in that paper.

B. RESILIENCE
B.1 Atomic Algorithms
In order to guarantee that sudden provider failures would not put
the system in an unstable state, all algorithms needed to be atomic
(all-or-nothing). For put and get operations, this was achieved by
using a manifest update as a ”commit” operation.

Algorithm 1 Put file
(1) Share file under new random name
(2) Update manifest to point file to the random name
(3) If file existed previously, delete files with the old random name

Algorithm 2 Delete file
(1) Update manifest to remove file
(2) Delete files with the random name previously pointed to by file

In each of these operations, a failure before or after the manifest
update results in a consistent state across all providers (with per-
haps some garbage files that need to be deleted). While manifest
failures do have the potential to bring the system out-of-sync, our
threat model assumes that a maximum of threshold providers fail
at a time. If this is the case, then the manifest operation is com-
mitted, and the manifest will be repaired on later operations as the
failing providers become operational. This random-name scheme
makes any operation reversible because there is a clear ”commit”
step, without which all providers are left unfinalized.

B.2 Reprovisioning
As a result of our assumption that providers can go offline or out
of business at any time, we needed to make it possible for users
to remove providers from the system and replace them with new
ones. However, it was crucial that we maintain all guarantees after
such a replacement. To do this, all files and the master key needed
to be reshared across providers with the new threshold parameters.
Atomicity was achieved by using a manifest-commit operation sim-
ilar to Put and Wipe. As before, failures in steps (1) and (2) result

Algorithm 3 Reprovision
(1) For every file in the system, recover it from the old provider

set, and reshare it to the new provider set with a new name
(2) Create a new manifest with information about all new shares,

and share it across new providers
(3) Share the new master key across all providers, and broadcast

the new manifest name (commit).
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only in creating some extra garbage, and a failure in step 3 results
in a consistent state that can be repaired.

B.3 Exponential Decay
After a successful operation, all providers are collected so that their
internal scores can be updated. The scores are updated with an ob-
servation xp,t+1, representing the providers’ performance in the
last operation. If the provider was successful, xp,t+1 = 1, and if the
provider failed (invalid share, connection failures, etc), xp,t+1 = 0.
The score is then updated according to the update rule

scorep,t+1 = αscorep,t + (1− α)xp,t+1

For our purposes, α was chosen to be 0.7. Thus, the score is a
reflection of both the provider’s past and current behavior. If a
provider’s score drops below a threshold of 0.05, it is considered
RED, and users are alerted that, while the system is fully opera-
tional, there are major problems with the provider. For scores be-
tween 0.05 and 0.95, users are notified that the provider is expe-
riencing difficulties. If a provider is red, repairs and retries are not
attempted. However, any requested operation is attempted at least
once in all cases, ensuring that if a failing provider comes back
online, its scores will rise back up.

B.4 Repair and retry
If an operation fails, all identified failing providers are updated ac-
cording to the exponential decay update rule. Then, if no providers
are RED, the operation is retried. Because a failure necessarily de-
creases the score of at least one provider, the retry procedure will
always halt - either with a successful operation, or with a provider
becoming RED.
If an operation is started when some providers are RED, the opera-
tion is still tried once. Then, on failure, the operation is not retried,
as retries only happen when all providers are not RED.
When a provider loses or corrupts a file/key share, that share needs
to be replaced as soon as possible. Upon a successful recovery and
diagnosis of failing providers, any necessary repairs are performed.
For failed key shares, this involves choosing a new master key,
re-encrypting the manifest, and re-sharing and re-distributing the
bootstrap keys and manifest. For failed file shares, the repair in-
volves re-uploading the file, encrypted with a new key and stored
with a new random name. These repairs follow the same protocols
as any other operations, and so ensure that the system stays in a
stable state, regardless of any mid-operation provider failures.
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